Genetic population assignment: potential for seed provenance ID?

Hayley Tumas (she/her) Sally Aitken's Lab | University of British Columbia on the traditional & unceded territory of the x^wməθk^wəýəm (Musqueam) Challenges to our Future Tree Seed Supply June 23, 2022

What is population assignment?

What is population assignment?

What is population assignment?

Illegal harvest

Goncalves Nazareno & Sedrez dos Reis 2013

Illegal harvest

Goncalves Nazareno & Sedrez dos Reis 2013

Conservation & Management

Conservation & Management

Illegal harvest

Conservation & Management

Seed provenance ID

Hintsteiner et al. 2018

How to do population assignment?

What do we need?

- Spatially referenced genotypes of 1. samples from all possible populations
- 2. Population structure

Step 1: Develop genetic markers

Step 1: Develop genetic markers

Highly variable to pick up differences OR Low variability, but geographically restricted

- Inherited from both parents
 - 2 alleles (Mom + Dad) ex. Aa or CC
- Species-specific
- Look at panels of 10s (msats) or 100s-1000s (SNPs)
- Highly variable (masts) or spread throughout genome (SNPs)

- Target & sequence one region
- One allele
- Lower variability
- Greater geographic restriction

Need to genotype all possible populations

Can we do population assignment in BC conifers?

It depends:

- Scale of interest
- Life history

Conifer Life History

Conifer Life History

Conifer Life History

MacLachlan et al. 2021

Tree Life History: Big Leaf Maple

DAPC Axis 1

So, can we do population assignment in BC conifers?

it depends...

Different Varieties

Different Varieties: Douglas-fir

CoAdapTree

Rafael Candido-Ribeiro UBC Brandon Lind UBC

Sally Aitken UBC

Sam Yeaman UCalgary

Different Varieties: Douglas-fir

Different Varieties: Douglas-fir

Hybridization

Hybridization: Interior Spruce

東京

Small remnant populations

Small remnant populations

Vance 2019

Geographic Barriers

Geographic Barriers: Lodgepole Pine

Mahony et al 2019

Mitochondrial Markers

Seeds tend to stay closer to mom *still depends on variation across moms

Hamrick & Trapnell 2011

Mitochondrial Markers

Potter et al. 2013

Conclusions

 Any provenance identification would take investment

 Accuracy of ID highly dependent on scale and life history

BUT...

¹National Human Genome Research Institute ² National Center for Biotechnology Information

Use neutral markers to examine demographic processes like migration, population size, and population structure

Adaptive markers could reveal finer scale geographic structure

Mahony et al 2019

Mahony et al 2019

Advances in assignment methods

performed up to 7.8 and 11.2 percentage points better than F_{ST}selected panels of similar size - Sylvester et al. 2017 this approach yields median test errors of 16.9km, 5.7km, and 85km - Battery et al. 2020

Conclusions Amended*

 Any provenance identification would take investment

 Accuracy of ID highly dependent on scale and life history

* Investment will decrease and accuracy will increase *

Questions?

or feel free to ask me later: hayley.tumas@ubc.ca